If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2-20n=0
a = 15; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·15·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*15}=\frac{0}{30} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*15}=\frac{40}{30} =1+1/3 $
| 3(2x-2)=2(3) | | 4/x-1/10=3/10 | | 1-(2x-3)=4-(5x-6) | | 6x+7x+9x=132 | | 189-5n=5n+37=n+7 | | 4a+5-8a=-1 | | 0.5m+6=m | | x-1/2+x-2/3=x-3/4+x-4/5 | | -17x-2=7x+17 | | (3x)6=(6x)5 | | 2x+58=100 | | 1.8x5.02=9.036 | | 4x+87=151 | | 5(9–x)=3 | | 6y+7y+4+9=3y–3 | | 5(9–m)=3 | | 7y–14=-7y | | 5x+6x+11=5–3x | | 2x-3=103-1/3 | | -24+12x-10=-4(-3+8)-2 | | x+54=127 | | 8w2+18w–81=0 | | (6x-8)=180 | | 2(3y-1)=3+7 | | 3+2x=-3x+7 | | (2x-3)÷3+(-x+36)÷2=103 | | 4(y+1)+y=8(y-1)=+6 | | 7b+1=9b | | 4x+28-8=-12 | | (X+2)²+(x-2)²=0 | | −6x=36 | | 16x+14-20=4x+6x+2 |